desc.Rd
Concisely describes a kott.design
object.
desc(deskott, descfun = NULL, ...)
deskott | Object of class |
---|---|
descfun | Optional description function to be used; must accept a |
… | Additional parameters to be passed to |
This function prints a concise description (i) of the sampling design for the original survey data and (ii) of the replication process these data have undergone.
The optional argument descfun
allows to specify an R function (like head
, str
, summary
, …) to be used to analyse, describe, or summarise the data frame contained in deskott
.
The return value depends on the descfun
parameter. If not specified (the default option), desc
does not return any value.
data(data.examples) # Creation of a kott.design object: kdes<-kottdesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM, weights=~weight,nrg=15) # Concise description: desc(kdes)#> DAGJK replicated survey data #> > 15 random groups #> > Stratified 2 - Stage Cluster Sampling design #> - [55] strata #> - [1307,2372] clusters #> #> Call: #> kottdesign(data = example, ids = ~towcod + famcod, strata = ~SUPERSTRATUM, #> weights = ~weight, nrg = 15) #># Display first rows of kdes data: desc(kdes,head)#> DAGJK replicated survey data #> > 15 random groups #> > Stratified 2 - Stage Cluster Sampling design #> - [55] strata #> - [1307,2372] clusters #> #> Call: #> kottdesign(data = example, ids = ~towcod + famcod, strata = ~SUPERSTRATUM, #> weights = ~weight, nrg = 15) #> #> #> ***************************************** #> survey data #> *****************************************#> towcod famcod key weight stratum SUPERSTRATUM sr regcod procod x1 x2 x3 y1 y2 #> 1 147 3103 1 485.8 803 26 0 7 8 0 0 0 0 0 #> 2 147 3103 2 485.8 803 26 0 7 8 0 0 0 1 1 #> 3 147 3109 3 485.8 803 26 0 7 8 0 0 0 1 1 #> 4 147 3111 4 485.8 803 26 0 7 8 0 0 0 0 0 #> 5 147 3120 5 485.8 803 26 0 7 8 0 0 1 1 1 #> 6 147 3121 6 485.8 803 26 0 7 8 0 0 0 0 0 #> y3 age5c age10c sex marstat z income rgi weight1 weight2 weight3 #> 1 0 3 5 f unmarried 148.32432 1158 12 485.8 485.8 485.8 #> 2 0 2 4 f married 88.57746 1268 12 485.8 485.8 485.8 #> 3 0 3 6 f married 115.07377 108 12 485.8 485.8 485.8 #> 4 0 4 7 f married 86.37647 1700 12 485.8 485.8 485.8 #> 5 0 2 4 f married 110.52172 537 12 485.8 485.8 485.8 #> 6 0 3 5 f married 134.40092 2143 12 485.8 485.8 485.8 #> weight4 weight5 weight6 weight7 weight8 weight9 weight10 weight11 weight12 #> 1 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 2 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 3 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 4 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 5 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 6 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> weight13 weight14 weight15 #> 1 691.088 691.088 485.8 #> 2 691.088 691.088 485.8 #> 3 691.088 691.088 485.8 #> 4 691.088 691.088 485.8 #> 5 691.088 691.088 485.8 #> 6 691.088 691.088 485.8# Ask essential information on kdes internal structure: desc(kdes,str)#> DAGJK replicated survey data #> > 15 random groups #> > Stratified 2 - Stage Cluster Sampling design #> - [55] strata #> - [1307,2372] clusters #> #> Call: #> kottdesign(data = example, ids = ~towcod + famcod, strata = ~SUPERSTRATUM, #> weights = ~weight, nrg = 15) #> #> #> ***************************************** #> survey data #> ***************************************** #> Classes ‘kott.design’ and 'data.frame': 3000 obs. of 37 variables: #> $ towcod : int 147 147 147 147 147 147 147 147 147 147 ... #> $ famcod : int 3103 3103 3109 3111 3120 3121 3123 3123 3123 3124 ... #> $ key : int 1 2 3 4 5 6 7 8 9 10 ... #> $ weight : num 486 486 486 486 486 ... #> $ stratum : Factor w/ 80 levels "801","802","803",..: 3 3 3 3 3 3 3 3 3 3 ... #> $ SUPERSTRATUM: Factor w/ 55 levels "1","2","3","4",..: 26 26 26 26 26 26 26 26 26 26 ... #> $ sr : int 0 0 0 0 0 0 0 0 0 0 ... #> $ regcod : Factor w/ 3 levels "6","7","10": 2 2 2 2 2 2 2 2 2 2 ... #> $ procod : Factor w/ 10 levels "8","9","10","11",..: 1 1 1 1 1 1 1 1 1 1 ... #> $ x1 : int 0 0 0 0 0 0 0 0 0 0 ... #> $ x2 : int 0 0 0 0 0 0 0 0 0 0 ... #> $ x3 : int 0 0 0 0 1 0 0 0 0 0 ... #> $ y1 : int 0 1 1 0 1 0 1 0 0 1 ... #> $ y2 : int 0 1 1 0 1 0 1 0 0 1 ... #> $ y3 : int 0 0 0 0 0 0 0 0 0 0 ... #> $ age5c : Factor w/ 5 levels "1","2","3","4",..: 3 2 3 4 2 3 1 2 2 3 ... #> $ age10c : Factor w/ 10 levels "1","2","3","4",..: 5 4 6 7 4 5 1 4 4 5 ... #> $ sex : Factor w/ 2 levels "f","m": 1 1 1 1 1 1 2 2 2 1 ... #> $ marstat : Factor w/ 3 levels "married","unmarried",..: 2 1 1 1 1 1 2 1 1 1 ... #> $ z : num 148.3 88.6 115.1 86.4 110.5 ... #> $ income : num 1158 1268 108 1700 537 ... #> $ rgi : int 12 12 12 12 12 12 12 12 12 12 ... #> $ weight1 : num 486 486 486 486 486 ... #> $ weight2 : num 486 486 486 486 486 ... #> $ weight3 : num 486 486 486 486 486 ... #> $ weight4 : num 486 486 486 486 486 ... #> $ weight5 : num 486 486 486 486 486 ... #> $ weight6 : num 486 486 486 486 486 ... #> $ weight7 : num 486 486 486 486 486 ... #> $ weight8 : num 486 486 486 486 486 ... #> $ weight9 : num 486 486 486 486 486 ... #> $ weight10 : num 486 486 486 486 486 ... #> $ weight11 : num 486 486 486 486 486 ... #> $ weight12 : num 75.2 75.2 75.2 75.2 75.2 ... #> $ weight13 : num 691 691 691 691 691 ... #> $ weight14 : num 691 691 691 691 691 ... #> $ weight15 : num 486 486 486 486 486 ... #> - attr(*, "data")= symbol example #> - attr(*, "ids")=Class 'formula' language ~towcod + famcod #> .. ..- attr(*, ".Environment")=<environment: 0x0000000024a67de8> #> - attr(*, "strata")=Class 'formula' language ~SUPERSTRATUM #> .. ..- attr(*, ".Environment")=<environment: 0x0000000024a67de8> #> - attr(*, "weights")=Class 'formula' language ~weight #> .. ..- attr(*, ".Environment")=<environment: 0x0000000024a67de8> #> - attr(*, "self.rep.str")= logi FALSE #> - attr(*, "nrg")= int 15 #> - attr(*, "call")= language kottdesign(data = example, ids = ~towcod + famcod, strata = ~SUPERSTRATUM, weights = ~weight, nrg = 15)# Creation of a kott.cal.design object: kdescal04p<-kottcalibrate(deskott=kdes,df.population=pop04p, calmodel=~x1+x2+x3-1,partition=~regcod,calfun="logit", bounds=bounds,aggregate.stage=2) # Concise description: desc(kdescal04p)#> Calibrated DAGJK replicated survey data #> > 15 random groups #> > Stratified 2 - Stage Cluster Sampling design #> - [55] strata #> - [1307,2372] clusters #> #> Call: #> kottcalibrate(deskott = kdes, df.population = pop04p, calmodel = ~x1 + #> x2 + x3 - 1, partition = ~regcod, calfun = "logit", bounds = bounds, #> aggregate.stage = 2) #># Display first rows of kdescal04p data: desc(kdescal04p,head)#> Calibrated DAGJK replicated survey data #> > 15 random groups #> > Stratified 2 - Stage Cluster Sampling design #> - [55] strata #> - [1307,2372] clusters #> #> Call: #> kottcalibrate(deskott = kdes, df.population = pop04p, calmodel = ~x1 + #> x2 + x3 - 1, partition = ~regcod, calfun = "logit", bounds = bounds, #> aggregate.stage = 2) #> #> #> ***************************************** #> survey data #> *****************************************#> towcod famcod key weight stratum SUPERSTRATUM sr regcod procod x1 x2 x3 y1 y2 #> 1 147 3103 1 485.8 803 26 0 7 8 0 0 0 0 0 #> 2 147 3103 2 485.8 803 26 0 7 8 0 0 0 1 1 #> 3 147 3109 3 485.8 803 26 0 7 8 0 0 0 1 1 #> 4 147 3111 4 485.8 803 26 0 7 8 0 0 0 0 0 #> 5 147 3120 5 485.8 803 26 0 7 8 0 0 1 1 1 #> 6 147 3121 6 485.8 803 26 0 7 8 0 0 0 0 0 #> y3 age5c age10c sex marstat z income rgi weight1 weight2 weight3 #> 1 0 3 5 f unmarried 148.32432 1158 12 485.8 485.8 485.8 #> 2 0 2 4 f married 88.57746 1268 12 485.8 485.8 485.8 #> 3 0 3 6 f married 115.07377 108 12 485.8 485.8 485.8 #> 4 0 4 7 f married 86.37647 1700 12 485.8 485.8 485.8 #> 5 0 2 4 f married 110.52172 537 12 485.8 485.8 485.8 #> 6 0 3 5 f married 134.40092 2143 12 485.8 485.8 485.8 #> weight4 weight5 weight6 weight7 weight8 weight9 weight10 weight11 weight12 #> 1 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 2 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 3 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 4 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 5 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> 6 485.8 485.8 485.8 485.8 485.8 485.8 485.8 485.8 75.22406 #> weight13 weight14 weight15 weight.cal weight.cal1 weight.cal2 weight.cal3 #> 1 691.088 691.088 485.8 485.8000 485.8000 485.8000 485.8000 #> 2 691.088 691.088 485.8 485.8000 485.8000 485.8000 485.8000 #> 3 691.088 691.088 485.8 485.8000 485.8000 485.8000 485.8000 #> 4 691.088 691.088 485.8 485.8000 485.8000 485.8000 485.8000 #> 5 691.088 691.088 485.8 364.4264 378.1313 327.4412 376.3952 #> 6 691.088 691.088 485.8 485.8000 485.8000 485.8000 485.8000 #> weight.cal4 weight.cal5 weight.cal6 weight.cal7 weight.cal8 weight.cal9 #> 1 485.8000 485.8000 485.8000 485.8000 485.8000 485.8000 #> 2 485.8000 485.8000 485.8000 485.8000 485.8000 485.8000 #> 3 485.8000 485.8000 485.8000 485.8000 485.8000 485.8000 #> 4 485.8000 485.8000 485.8000 485.8000 485.8000 485.8000 #> 5 353.0205 338.0826 366.6332 357.7328 352.3313 408.9847 #> 6 485.8000 485.8000 485.8000 485.8000 485.8000 485.8000 #> weight.cal10 weight.cal11 weight.cal12 weight.cal13 weight.cal14 weight.cal15 #> 1 485.8000 485.8000 75.22406 691.0880 691.0880 485.8000 #> 2 485.8000 485.8000 75.22406 691.0880 691.0880 485.8000 #> 3 485.8000 485.8000 75.22406 691.0880 691.0880 485.8000 #> 4 485.8000 485.8000 75.22406 691.0880 691.0880 485.8000 #> 5 394.0674 352.3313 63.43341 574.6311 493.4463 325.5681 #> 6 485.8000 485.8000 75.22406 691.0880 691.0880 485.8000