fpcdat.Rd
A small dataset mimicking sample data selected with a 2-stage, stratified, cluster sampling without replacement. Allows to run R code contained in the ‘Examples’ section of the ReGenesees package help pages.
data(fpcdat)
A data frame with 28 observations on the following 12 variables.
psu
Identifier of the primary sampling units, numeric
ssu
Identifier of the second stage sampling units, numeric
stratum
Stratification Variable, a factor
with 5
levels: S.1
, S.2
, S.3
, S.4
, S.5
sr
Strata type, integer
with values 0
(NSR strata) and 1
(SR strata)
fpc1
First stage finite population corrections, given as population sizes (in terms of psu clusters) inside strata, numeric
fpc2
Second stage finite population corrections, given as population sizes (in terms of ssu clusters) inside the corresponding sampled psu, numeric
x
A numeric
variable
y
A numeric
variable
dom1
A variable defining unplanned estimation domains, factor
with 3
levels: A
, B
, C
dom2
A variable defining unplanned estimation domains, factor
with 6
levels: a
, b
, c
, d
, e
, f
w
Direct weights, numeric
z
A numeric
variable
pl.domain
A variable defining planned estimation domains, factor
with 3
levels: pd.1
, pd.2
, pd.3
Though very small, the fpcdat
dataset concentrates a lot of interesting features. The sampling design is a complex one, with both self-representing (SR) and not-self-representing (NSR) strata. Sampling fractions are deliberately not negligible, in order to stress the effects of finite population corrections on variance estimation. Moreover, being the observations so few, performing computations on the fpcdat
dataset allows to check and understand easily all the effects of setting/changing the global variance estimation options of the ReGenesees package (see e.g. ReGenesees.options
).
ReGenesees.options
for setting/changing variance estimation options.
#> psu ssu stratum sr fpc1 fpc2 x y dom1 dom2 w z pl.domain #> 1 1 0 S.1 0 20 4 10 9.21 B a 13.333333 122.39639 pd.1 #> 2 1 1 S.1 0 20 4 3 6.77 A a 13.333333 120.71089 pd.1 #> 3 1 1 S.1 0 20 4 4 4.68 B c 13.333333 95.96800 pd.1 #> 4 2 2 S.1 0 20 2 9 8.92 C a 6.666667 88.26737 pd.1 #> 5 2 3 S.1 0 20 2 3 7.76 A d 6.666667 113.77454 pd.1 #> 6 3 4 S.1 0 20 3 8 8.14 A b 10.000000 92.73225 pd.1str(fpcdat)#> 'data.frame': 28 obs. of 13 variables: #> $ psu : int 1 1 1 2 2 3 3 4 4 4 ... #> $ ssu : int 0 1 1 2 3 4 5 6 6 6 ... #> $ stratum : Factor w/ 5 levels "S.1","S.2","S.3",..: 1 1 1 1 1 1 1 2 2 2 ... #> $ sr : int 0 0 0 0 0 0 0 0 0 0 ... #> $ fpc1 : int 20 20 20 20 20 20 20 12 12 12 ... #> $ fpc2 : int 4 4 4 2 2 3 3 2 2 2 ... #> $ x : int 10 3 4 9 3 8 5 0 6 5 ... #> $ y : num 9.21 6.77 4.68 8.92 7.76 8.14 0.47 0.49 1.16 4.01 ... #> $ dom1 : Factor w/ 3 levels "A","B","C": 2 1 2 3 1 1 2 2 1 1 ... #> $ dom2 : Factor w/ 6 levels "a","b","c","d",..: 1 1 3 1 4 2 2 5 3 2 ... #> $ w : num 13.33 13.33 13.33 6.67 6.67 ... #> $ z : num 122.4 120.7 96 88.3 113.8 ... #> $ pl.domain: Factor w/ 3 levels "pd.1","pd.2",..: 1 1 1 1 1 1 1 2 2 2 ...