Preamble

ReGenesees-package

ReGenesees: a Package for Design-Based and Model-Assisted Analysis of Complex Sample Surveys

Survey Design

e.svydesign() summary(<analytic>)

Specification of a Complex Survey Design

weights()

Retrieve Sampling Units Weights

find.lon.strata()

Find Strata with Lonely PSUs

collapse.strata()

Collapse Strata Technique for Eliminating Lonely PSUs

des.addvars()

Add Variables to Design Objects

des.merge()

Merge New Survey Data into Design Objects

smooth.strat.jump()

Smooth Weights to Cope with Stratum Jumpers

Calibration

pop.template()

Template Data Frame for Known Population Totals

population.check()

Compliance Test for Known Totals Data Frames

pop.desc()

Natural Language Description of Known Totals Templates

fill.template()

Fill the Known Totals Template for a Calibration Task

pop.plot()

Plot Calibration Control Totals vs Current Estimates

bounds.hint()

A Hint for Range Restricted Calibration

e.calibrate()

Calibration of Survey Weights

check.cal()

Calibration Convergence Check

trimcal()

Trim Calibration Weights while Preserving Calibration Constraints

g.range()

Range of g-Weights

get.residuals()

Calibration Residuals of Interest Variables

get.linvar()

Linearized Variable(s) of Complex Estimators by Domains

ext.calibrated()

Make ReGenesees Digest Externally Calibrated Weights

contrasts.RG() contrasts.off() contrasts.reset() contr.off()

Set, Reset or Switch Off Contrasts for Calibration Models

`%into%` `%into%`

Compress Nested Factors

Special Purpose Calibration

prep.calBeta() pop.calBeta()

Calibration on Multiple Regression Coefficients

pop.fuse()

Fuse Control Totals Data Frames for Special Purpose and Ordinary Calibration Tasks

Estimates and Sampling Errors

svystatTM() coef(<svystatTM>) SE(<svystatTM>) VAR(<svystatTM>) cv(<svystatTM>) deff(<svystatTM>) confint(<svystatTM>)

Estimation of Totals and Means in Subpopulations

svystatR() coef(<svystatR>) SE(<svystatR>) VAR(<svystatR>) cv(<svystatR>) deff(<svystatR>) confint(<svystatR>)

Estimation of Ratios in Subpopulations

svystatS() coef(<svystatS>) SE(<svystatS>) VAR(<svystatS>) cv(<svystatS>) deff(<svystatS>) confint(<svystatS>)

Estimation of Shares in Subpopulations

svystatSR() coef(<svystatSR>) SE(<svystatSR>) VAR(<svystatSR>) cv(<svystatSR>) deff(<svystatSR>) confint(<svystatSR>)

Estimation of Share Ratios in Subpopulations

svystatB() coef(<svystatB>) SE(<svystatB>) VAR(<svystatB>) cv(<svystatB>) deff(<svystatB>) confint(<svystatB>) summary(<svystatB>)

Estimation of Population Regression Coefficients in Subpopulations

svystatQ() coef(<svystatQ>) SE(<svystatQ>) VAR(<svystatQ>) cv(<svystatQ>) confint(<svystatQ>)

Estimation of Quantiles in Subpopulations

svystatL() coef(<svystatL>) SE(<svystatL>) VAR(<svystatL>) cv(<svystatL>) deff(<svystatL>) confint(<svystatL>)

Estimation of Complex Estimators in Subpopulations

svySigma() coef(<svySigma>) SE(<svySigma>) VAR(<svySigma>) cv(<svySigma>) confint(<svySigma>)

Estimation of the Population Standard Deviation of a Variable

svySigma2() coef(<svySigma2>) SE(<svySigma2>) VAR(<svySigma2>) cv(<svySigma2>) confint(<svySigma2>)

Estimation of the Population Variance of a Variable

svyDelta() details() coef(<svyDelta>) SE(<svyDelta>) VAR(<svyDelta>) cv(<svyDelta>) confint(<svyDelta>)

Estimation of a Measure of Change from Two Not Necessarily Independent Samples

aux.estimates()

Quick Estimates of Auxiliary Variables Totals

CoV() Corr()

Design Covariance and Correlation of Complex Estimators in Subpopulations

write.svystat()

Export Survey Statistics

SE() VAR() cv() deff()

Extractor Functions for Variability Statistics

ReGenesees.options

Variance Estimation Options for the ReGenesees Package

Generalized Variance Functions Method

GVF.db `GVF.db$insert`() `GVF.db$delete`() `GVF.db$get`() `GVF.db$assign`() `GVF.db$reset`()

Archive of Registered GVF Models

gvf.input() plot(<gvf.input>)

Prepare Input Data to Fit GVF Models

svystat() plot(<gvf.input.gr>) coef(<svystat.gr>) SE(<svystat.gr>) VAR(<svystat.gr>) cv(<svystat.gr>) deff(<svystat.gr>) confint(<svystat.gr>)

Compute Many Estimates and Errors in Just a Single Shot

fit.gvf() print(<gvf.fit>) print(<gvf.fits>) print(<gvf.fit.gr>) print(<gvf.fits.gr>) `[`(<gvf.fits>) `[[`(<gvf.fits>) summary(<gvf.fit>) summary(<gvf.fits>) summary(<gvf.fit.gr>) summary(<gvf.fits.gr>)

Fit GVF Models

plot(<gvf.fit>) plot(<gvf.fits>) plot(<gvf.fit.gr>) plot(<gvf.fits.gr>)

Diagnostic Plots for Fitted GVF Models

drop.gvf.points()

Drop Outliers and Refit a GVF Model

getR2() AIC(<gvf.fits>) BIC(<gvf.fits>)

Quality Measures on Fitted GVF Models

getBest()

Identify the Best Fit GVF Model

predictCV()

Predict CV Values via Fitted GVF Models

coef(<gvf.fit>) coef(<gvf.fits>) coef(<gvf.fit.gr>) coef(<gvf.fits.gr>) residuals(<gvf.fit>) residuals(<gvf.fits>) residuals(<gvf.fit.gr>) residuals(<gvf.fits.gr>) fitted(<gvf.fit>) fitted(<gvf.fits>) fitted(<gvf.fit.gr>) fitted(<gvf.fits.gr>) predict(<gvf.fit>) predict(<gvf.fits>) predict(<gvf.fit.gr>) predict(<gvf.fits.gr>) effects(<gvf.fit>) effects(<gvf.fits>) effects(<gvf.fit.gr>) effects(<gvf.fits.gr>) rstandard(<gvf.fit>) rstandard(<gvf.fits>) rstandard(<gvf.fit.gr>) rstandard(<gvf.fits.gr>) rstudent(<gvf.fit>) rstudent(<gvf.fits>) rstudent(<gvf.fit.gr>) rstudent(<gvf.fits.gr>) anova(<gvf.fit>) anova(<gvf.fits>) anova(<gvf.fit.gr>) anova(<gvf.fits.gr>) vcov(<gvf.fit>) vcov(<gvf.fits>) vcov(<gvf.fit.gr>) vcov(<gvf.fits.gr>)

Miscellanea: Methods for Fitted GVF Models

estimator.kind()

Which Estimator Did Generate these Survey Statistics?

Sample Size and Power

n.prop() prec.prop() n.comp2prop() pow.comp2prop() mde.comp2prop()

Sample Size Requirements and Power Calculations for Proportions

n.mean() prec.mean() n.comp2mean() pow.comp2mean() mde.comp2mean()

Sample Size Requirements and Power Calculations for Means

Diagnostics and Utilities

UWE()

Unequal Weighting Effect

Zapsmall(<default>) Zapsmall(<data.frame>)

Zapsmall Data Frame Columns and Numeric Vectors

Data Sets

data.examples

Artificial Household Survey Data

fpcdat

A Small But Not Trivial Artificial Sample Data Set

sbs

Artificial Structural Business Statistics Data

Delta.el

Two Artificial Samples of Elementary Units for Estimation of Change

Delta.clus

Two Artificial Cluster Samples for Estimation of Change

AF.gvf

Example Data for GVF Model Fitting