svystatR.Rd
Calculates estimates, standard errors and confidence intervals for Ratios between Totals in subpopulations.
svystatR(design, num, den, by = NULL, cross = FALSE, vartype = c("se", "cv", "cvpct", "var"), conf.int = FALSE, conf.lev = 0.95, deff = FALSE, na.rm = FALSE) # S3 method for svystatR coef(object, ...) # S3 method for svystatR SE(object, ...) # S3 method for svystatR VAR(object, ...) # S3 method for svystatR cv(object, ...) # S3 method for svystatR deff(object, ...) # S3 method for svystatR confint(object, ...)
design | Object of class |
---|---|
num | Formula defining the numerator variables for the ratios. |
den | Formula defining the denominator variables for the ratios. |
by | Formula specifying the variables that define the "estimation domains". If |
cross | Should ratios be estimated for all the pairs of variables in |
vartype |
|
conf.int | Compute confidence intervals for the estimates? The default is
|
conf.lev | Probability specifying the desired confidence level: the default value is |
deff | Should the design effect be computed? The default is |
na.rm | Should missing values (if any) be removed from the variables of interest? The default is
|
object | An object of class |
... | Additional arguments to |
This function computes weighted estimates for Ratios between Totals using suitable weights depending on the class of design
: calibrated weights for class cal.analytic
and direct weights otherwise. Standard errors are calculated using the Taylor linearization technique.
The mandatory argument num
(den
) identifies the variables whose totals appear as numerators (denominators) in the Ratios: the corresponding formula must be of the type num = ~num.1 + ... + num.k
(den = ~den.1 + ... + den.l
). The design
variables referenced by num
(den
) must be numeric
.
If cross=TRUE
, the function computes estimates for all the Ratios between pairs of variables coming from num
and den
(that is k*l
estimates for the formulae above). If, on the contrary, cross=FALSE
(the default), Ratios get estimated parallel-wise and R recycling rule is applied whenever k!=l
: for the formulae above, this generates r
Ratios, where r=max(k,l)
.
The optional argument by
specifies the variables that define the "estimation domains", that is the subpopulations for which the estimates are to be calculated. If by=NULL
(the default option), the estimates produced by svystatR
refer to the whole population. Estimation domains must be defined by a formula: for example the statement by=~B1:B2
selects as estimation domains the subpopulations determined by crossing the modalities of variables B1
and B2
. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2
: if you need to compute estimates for domains B1
and B2
separately, you have to call svystatR
twice. The design
variables referenced by by
(if any) should be of type factor
, otherwise they will be coerced.
The conf.int
argument allows to request the confidence intervals for the estimates. By default conf.int=FALSE
, that is the confidence intervals are not provided.
Whenever confidence intervals are requested (i.e. conf.int=TRUE
), the desired confidence level can be specified by means of the conf.lev
argument. The conf.lev
value must represent a probability (0<=conf.lev<=1
) and its default is chosen to be 0.95
.
The optional argument deff
allows to request the design effect [Kish 1995] for the estimates. By default deff=FALSE
, that is the design effect is not provided. The design effect of an estimator is defined as the ratio between the variance of the estimator under the actual sampling design and the variance that would be obtained for an 'equivalent' estimator under a hypothetical simple random sampling without replacement of the same size. To obtain an estimate of the design effect comparing to simple random sampling “with replacement”, one must use deff="replace"
.
Being Ratios nonlinear estimators, the design effect is estimated on the linearized version of the estimator (that is: for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are currently computed by taking the ratios between the actual variance estimates and those that would have been obtained if a simple random sampling were carried out within that subpopulation. This is the same as the srssubpop
option for Stata's function estat
.
Missing values (NA
) in interest variables should be avoided. If na.rm=FALSE
(the default) they generate NAs in estimates (or even an error, if design
is calibrated). If na.rm=TRUE
, observations containing NAs are dropped, and estimates get computed on non missing values only. This implicitly assumes that missing values hit interest variables completely at random: should this not be the case, computed estimates would be biased. Notice that the na.rm=TRUE
option is only allowed for a single Ratio, i.e. if num
and den
reference a single interest variable.
An object inheriting from the data.frame
class, whose detailed structure depends on input parameters' values.
It can happen that, in some subpopulations, the estimate of the Total of some den
variables turns out to be zero. In such cases svystatR
estimates are either NaN
or Inf
, and NaN
is returned for the corresponding SE estimates.
Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer Verlag.
Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.
European Commission, Eurostat, (2013). “Handbook on precision requirements and variance estimation for ESS households surveys: 2013 edition”, Publications Office. doi: 10.2785/13579
Estimators of Totals and Means svystatTM
, Shares svystatS
, Ratios between Shares svystatSR
, Multiple Regression Coefficients svystatB
, Quantiles svystatQ
, Complex Analytic Functions of Totals and/or Means svystatL
, and all of the above svystat
.
# Creation of a design object: data(sbs) des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc) # Estimation of the average value added per employee # at the nation level: svystatR(des,~va.imp2,~emp.num)#> Ratio SE #> va.imp2/emp.num 57.14199 1.018897# The same as above by economic activity macro-sector: svystatR(des,~va.imp2,~emp.num,~nace.macro,vartype="cvpct")#> nace.macro va.imp2/emp.num CV%.va.imp2/emp.num #> Agriculture Agriculture 58.59297 5.500097 #> Industry Industry 47.93647 1.372657 #> Commerce Commerce 226.99062 5.683984 #> Services Services 36.89123 1.563336# Another design object: data(data.examples) des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM, weights=~weight) # Estimation of the ratios y1/x1, y1/x2, y2/x1 and y2/x2 by region, # notice the use of argument cross: svystatR(des,~y1+y2,~x1+x2,by=~regcod,cross=TRUE)#> regcod y1/x1 y2/x1 y1/x2 y2/x2 SE.y1/x1 SE.y2/x1 SE.y1/x2 #> 6 6 7.164188 6.793907 17.44359 16.54202 1.0930880 1.0331919 3.790573 #> 7 7 5.441836 5.020335 19.52299 18.01082 0.9005887 0.8241623 3.873493 #> 10 10 9.041784 8.507911 22.57800 21.24488 1.4328263 1.3608361 5.279342 #> SE.y2/x2 #> 6 3.610181 #> 7 3.601568 #> 10 4.986415# ... compare the latter with the default (i.e. cross=FALSE) svystatR(des,~y1+y2,~x1+x2,by=~regcod)#> regcod y1/x1 y2/x2 SE.y1/x1 SE.y2/x2 #> 6 6 7.164188 16.54202 1.0930880 3.610181 #> 7 7 5.441836 18.01082 0.9005887 3.601568 #> 10 10 9.041784 21.24488 1.4328263 4.986415# Estimation of the ratios z/x1, z/x2 e z/x3 # for the whole population (notice the recycling rule): svystatR(des,~z,~x1+x2+x3,conf.int=TRUE)#> Ratio SE CI.l(95%) CI.u(95%) #> z/x1 2135.696 194.8578 1753.782 2517.610 #> z/x2 6244.631 772.9561 4729.665 7759.597 #> z/x3 5965.892 851.0741 4297.817 7633.966# Estimators of means can be thought as # estimators of ratios: svystatTM(des,~income,estimator="Mean")#> Mean SE #> income 1256.166 8.552545#> Ratio SE #> income/ones 1256.166 8.552545################################################## # Household-level averages in household surveys. # ################################################## # For an introduction on this topic, see ?svystatTM examples. # Load survey data: data(data.examples) # Define the survey design (variable famcod identifies households) exdes<-e.svydesign(data=example,ids=~towcod+famcod,strata=~stratum, weights=~weight) # Collapse strata to eliminate lonely PSUs exdes<-collapse.strata(design=exdes,block.vars=~sr:procod)#> #> # All lonely strata (45) successfully collapsed! #>#> Warning: No similarity score specified: achieved strata aggregation depends on the ordering of sample data# Now add new convenience variables to the design object: ## 'ones': to estimate individuals counts ## 'housize': to classify individuals by household size ## 'houdensity': to estimate households counts exdes<-des.addvars(exdes, ones=1, housize=factor(ave(famcod,famcod,FUN = length)), houdensity=ave(famcod,famcod,FUN = function(x) 1/length(x)) ) # Estimate the average number of household components by region: svystatR(exdes,num=~ones,den=~houdensity,by=~regcod, vartype="cvpct",conf.int=TRUE)#> regcod ones/houdensity CI.l(95%).ones/houdensity CI.u(95%).ones/houdensity #> 6 6 1.260202 1.226598 1.293806 #> 7 7 1.240827 1.204895 1.276759 #> 10 10 1.293958 1.252664 1.335251 #> CV%.ones/houdensity #> 6 1.360513 #> 7 1.477467 #> 10 1.628209# Estimate the average household income for the whole population: svystatR(exdes,num=~income,den=~houdensity,vartype="cvpct", conf.int=TRUE)#> Ratio CI.l(95%) CI.u(95%) CV% #> income/houdensity 1581.869 1546.801 1616.937 1.131079# ...for household size categories: svystatR(exdes,num=~income,den=~houdensity,by=~housize, vartype="cvpct",conf.int=TRUE)#> housize income/houdensity CI.l(95%).income/houdensity #> 1 1 1262.978 1241.878 #> 2 2 2494.997 2437.738 #> 3 3 3632.002 3462.927 #> 4 4 5862.479 4853.610 #> CI.u(95%).income/houdensity CV%.income/houdensity #> 1 1284.078 0.8523761 #> 2 2552.256 1.1709157 #> 3 3801.077 2.3751243 #> 4 6871.348 8.7802161# ...and for province and household size: svystatR(exdes,num=~income,den=~houdensity,by=~housize:procod, vartype="cvpct")#> housize procod income/houdensity CV%.income/houdensity #> 1.8 1 8 1218.423 3.498595e+00 #> 2.8 2 8 2662.211 5.793224e+00 #> 3.8 3 8 3319.570 1.394928e+01 #> 1.9 1 9 1292.456 3.882137e+00 #> 2.9 2 9 2542.949 2.233150e+00 #> 3.9 3 9 3554.366 4.319602e+00 #> 1.10 1 10 1292.177 1.711626e+00 #> 2.10 2 10 2504.872 2.373636e+00 #> 3.10 3 10 3742.118 4.581306e+00 #> 1.11 1 11 1324.953 3.256715e+00 #> 2.11 2 11 2365.077 7.840995e+00 #> 3.11 3 11 4159.863 3.792977e+00 #> 4.11 4 11 7483.000 1.139451e-14 #> 1.30 1 30 1191.891 3.324862e+00 #> 2.30 2 30 2386.506 3.914073e+00 #> 3.30 3 30 3476.722 1.061944e+01 #> 4.30 4 30 5185.000 1.754088e-14 #> 1.31 1 31 1253.714 2.745500e+00 #> 2.31 2 31 2319.011 3.459736e+00 #> 3.31 3 31 3219.664 8.640756e+00 #> 4.31 4 31 5326.000 0.000000e+00 #> 1.32 1 32 1247.437 2.969107e+00 #> 2.32 2 32 2607.850 4.750956e+00 #> 3.32 3 32 3114.500 1.829131e+01 #> 1.54 1 54 1242.540 1.415123e+00 #> 2.54 2 54 2479.523 2.146544e+00 #> 3.54 3 54 3786.966 3.931424e+00 #> 4.54 4 54 5566.346 5.220366e+00 #> 1.55 1 55 1229.519 3.380565e+00 #> 2.55 2 55 2526.219 2.260006e+00 #> 3.55 3 55 3860.897 6.782238e+00 #> 1.93 1 93 1321.382 2.385572e+00 #> 2.93 2 93 2608.374 3.130341e+00 #> 3.93 3 93 3364.158 4.813151e+00 #> 4.93 4 93 4656.000 1.949567e-14